
First passage times and asymmetry of DNA translocation

Rhonald C. Lua and Alexander Y. Grosberg
Department of Physics, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 55455, USA

�Received 9 August 2005; published 23 December 2005�

Motivated by experiments in which single-stranded DNA with a short hairpin loop at one end undergoes
unforced diffusion through a narrow pore, we study the first passage times for a particle, executing one-
dimensional Brownian motion in an asymmetric sawtooth potential, to exit one of the boundaries. We consider
the first passage times for the case of classical diffusion, characterized by a mean-square displacement of the
form ���x�2�� t, and for the case of anomalous diffusion or subdiffusion, characterized by a mean-square
displacement of the form ���x�2�� t� with 0���1. In the context of classical diffusion, we obtain an
expression for the mean first passage time and show that this quantity changes when the direction of the
sawtooth is reversed or, equivalently, when the reflecting and absorbing boundaries are exchanged. We discuss
at which numbers of “teeth” N �or number of DNA nucleotides� and at which heights of the sawtooth potential
this difference becomes significant. For large N, it is well known that the mean first passage time scales as N2.
In the context of subdiffusion, the mean first passage time does not exist. Therefore, we obtain instead the
distribution of first passage times in the limit of long times. We show that the prefactor in the power relation
for this distribution is simply the expression for the mean first passage time in classical diffusion. We also
describe a hypothetical experiment to calculate the average of the first passage times for a fraction of passage
events that each end within some time t*. We show that this average first passage time scales as N2/� in
subdiffusion.
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I. INTRODUCTION

Recent studies on the passage of DNA through narrow
channels, apart from being very interesting in their own
right, have been motivated by the exciting possibility of de-
veloping a practical technique to characterize and sequence
DNA. These single molecule experiments were pioneered by
Kasianowicz, Brandin, Branton, and Deamer �1� using a pro-
tein called �-hemolysin as a pore embedded in a lipid mem-
brane. When a voltage is applied across the membrane, an
ion current can be detected. When the DNA chain is inside
and blocking the channel, the current is suppressed. By mea-
suring the blockage time one can gather information about
the voltage-driven dynamics of DNA translocation. A large
amount of exciting data has been accumulated through such
experiments �2–5�. Recently, another group of experiments
was performed using solid state nanopores for voltage-driven
DNA translocation �6,7�.

On the theoretical side, much effort was placed in the
understanding of the entropic barrier associated with a trans-
location of a long polymer �8,9�. The electrostatic barrier
associated with charged DNA penetration through the low
dielectric constant membrane has been recently discussed
theoretically �10�. Another interesting question is about fric-
tion: whether friction on the small piece of DNA passing
through the narrow channel is larger or smaller than the fric-
tion experienced by the large DNA coils outside the mem-
brane. To this end, Lubensky and Nelson �11�, assuming the
channel friction dominance, were able to account for the ob-
served bimodal distribution of the passage times for single-
stranded DNA. In their model, each base preferentially tilts
towards one end of the single-stranded DNA chain �5� or 3��
�see Fig. 1�. Each peak in the distribution of passage times
therefore corresponds to a particular end entering the channel

first, the channel being just wide enough for a single strand
to pass through. More recently, Kantor and Kardar �12� and
then Storm et al. �7� argued that for sufficiently long DNA
there must be a crossover to the regime of the domination of
the out-of-channel friction, in which case the translocation

FIG. 1. �Color online� The four possible relative orientations of
DNA �“key”� and pore �“keyhole”�. In a similar figure from Luben-
sky and Nelson �Ref. �11�, Fig. 7�, the single-stranded DNA has no
loop. Instead, the four cases were due to the various relative orien-
tations of DNA, pore, and an applied electric field. Arrows in our
figure show the direction from the 5� to the 3� end in the DNA.
Inset in the middle shows schematically the tilted bases. The analy-
sis in our work compares the passage times for case 1A with case
1B �or 2A with 2B� in which the relative orientation between the
DNA bases and the pore is identical. In contrast, the experiments in
�14� study cases 1A and 2A, where the DNA enters the pore from
the same �cis� side.
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should become subdiffusive in character �with displacement
growing slower than t1/2 with time t�.

A new spin is added to the story by the experiment by
Meller and coworkers �14�. These authors devised an experi-
ment involving DNA having a string of identical bases �ad-
enine� in the single-stranded portion and a hairpin loop at
one end �Fig. 1� held in place by the bonding of complemen-
tary bases. Like double-stranded DNA, the hairpin cannot
enter the channel �a transmembrane pore of �-hemolysin�.
The hairpin, therefore, constrains the DNA to enter the pore
with its single-stranded end, as well as preventing the entire
DNA from crossing the membrane. In their experiment, the
DNA, driven by an applied voltage, enters the pore with its
single-stranded end. Thereafter, once the current is blocked
by the DNA, the voltage is either switched off, in which case
the DNA diffuses freely �nondriven�, or the sign of the volt-
age is flipped, in which case the DNA is pushed back. More-
over, by making two DNA samples, with the hairpin loop at
opposite ends, it is possible to observe DNA sliding away
from the pore in two opposite directions along the DNA
contour, and the observation suggests that DNA escapes in
one direction faster than in the other.

In the experiment �14�, by measuring the so-called “sur-
vival probability” S�t�, which is the probability that a DNA
molecule will stay in the pore as a function of the waiting
time, it was determined that the voltage-free dynamics of the
3� threaded molecules is about two times slower than the
corresponding diffusion of 5� threaded molecules having the
same sequence. Importantly, in both cases the DNA was
threaded from the same side of the pore �called the cis-side
of �-HL�. To delineate the underlying mechanism respon-
sible for the observed dynamics, the authors of the work �14�
performed all-atom molecular dynamics simulations, which
independently confirmed the experimental results for the
driven DNA. The simulations also showed that the confine-
ment of the DNA bases in the �-HL pore results in an even
stronger �compared to a free DNA� tilt of the bases with
respect to the DNA backbone towards the 5� end.

Authors of the work �14� phenomenologically interpret
their data by assigning two different diffusion constants for
the two separate experiments in which the same DNA is
placed in the channel in two possible orientations. This in-
terpretation is justified by the fact that the interactions be-
tween the DNA bases and the pore are different in these two
cases �perhaps via different barrier heights within the frame-
work of a sawtooth potential landscape discussed below�.

There is a temptation to summarize the experimental find-
ings of the work �14� in one sentence �although no one made
this mistake, including �14��: DNA diffuses in one direction
faster than in the other. Indeed, the observed asymmetry of
dynamics is consistent with the tilt of the nucleotides with
respect to the main DNA chain. This asymmetry then seems
easy to understand if the analogy is made with petting a cat
along or against the grain of its fur; the cat responds very
differently in the two cases �presumably because it experi-
ences very different friction�. Another, possibly even more
obvious, analogy would be carrying a Christmas tree top first
or base first through a narrow door; one again encounters
very different resistance in the two cases. The point is that
such analogies and interpretations are only possible for the

driven DNA motion, particularly for the system far into the
nonlinear regime �in terms of force-velocity relation�,
whereas for the portion of experiments in the work �14� in-
volving freely diffusing DNA such analogies and interpreta-
tions would be wrong; it is not surprising then that the au-
thors of the work �14� did not use such analogies and
interpretation for the freely diffusing DNA. Indeed, for free
diffusion, the friction coefficient �averaged over the scale
well exceeding a single base� moving in one direction and in
the opposite direction must be the same, as follows from the
Onsager symmetry relation, and the assumption of asymmet-
ric friction would be a grave mistake. Although no one actu-
ally made this mistake, including �14�, it is worth emphasiz-
ing why an assumption of asymmetric friction would be a
mistake. Indeed, if we only imagine that DNA �not driven by
any applied voltage� diffuses in one direction faster than in
the other, then we can easily build a perpetuum mobile �see
Fig. 2� moving indefinitely long through time at the expense
of thermal energy from the thermal bath, which is, of course,
impossible. In other words, freely diffusing DNA, when it is
already in the pore, in contrast to a �heavily driven� Christ-
mas tree through a door, must have the same friction coeffi-
cients when the DNA moves in either direction.

What is nice is that the experimental findings and their
interpretation in the work �14� are, in fact, in perfect agree-
ment with this thermodynamic analysis. In order to make this
reconciliation very clear, we immediately refer to the sym-
metry analysis in Fig. 1. Notice that the pore itself is asym-
metric �its crystallographic structure is known �15��, the
DNA backbone is also asymmetric �from 3� end to 5� end�,
and the loopy end creates further asymmetry. This gives four
possible orientations of the pore and the DNA with the loop:
two possibilities arise from two different mutual orientations
of the DNA backbone with respect to the pore �indicated by
the numbers 1 and 2 in Fig. 1�, and for each of these two
orientations there are two possibilities of where to place the
blocking loop �indicated by the letters A and B in Fig. 1�.
This symmetry analysis, as shown in Fig. 1, is reminiscent of
the symmetry analysis in the paper �11�, except that we have
no electric field, but instead have loops at the DNA ends.

We can now say that in any one of the arrangements, from
1A, 1B, 2A, or 2B, the DNA must experience the same fric-
tion moving up or down the pore; friction going up equals
friction going down. At the same time, the friction in con-
figurations 1A or 1B can be different from the friction in
configurations 2A or 2B, and they are likely to be different.
That is why the work �14� assigns two different diffusion
constants to the two DNA-pore mutual configurations �1A

FIG. 2. �Color online� This arrangement of DNA and pores
would have acted as a perpetuum mobile if the stationary diffusion
coefficient was asymmetric. This shows that it cannot be asymmet-
ric, the symmetry being a requirement of thermodynamics.
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and 2A�. By contrast, the loop itself likely has no effect on
the friction or diffusion coefficient, so we expect that the
diffusion coefficient should be the same for configurations
1A and 1B �same goes for 2A and 2B�. In other words, there
should be two distinct diffusion coefficients, not four. We
shall argue in this work that, nevertheless, there will be four
different diffusion times corresponding to the four configu-
rations in Fig. 1.

To explain our approach, it is convenient to adopt a ter-
minology in which, instead of considering diffusion of the
DNA chain, we consider diffusion of the passage point along
the DNA contour. Following Lubensky and Nelson �11�, we
consider a simple model in which asymmetry is presented in
the underlying potential landscape. For simplicity, we model
it with a sawtooth profile. The two orientations of the asym-
metric potential �relative to the boundary conditions� corre-
spond to the two possible placements of the blocking loop
for a given orientation between DNA and the pore �e.g., 1A
and 1B in Fig. 1�.

Like Lubensky and Nelson �11�, we focus on the first
passage time, which is the time it takes for the initially fully
“plugged” DNA to completely “unplug” from the pore. In
other words, it is the time needed for the diffusing particle
�or a random walker� to arrive for the first time on the open
end of the DNA, or to one end of the �0,L� interval, provided
that a reflecting boundary condition is imposed at the oppo-
site end.

We would like to emphasize the fundamental difference
between asymmetric diffusion, which is prohibited by ther-
modynamics, and symmetric diffusion over the asymmetric
potential landscape. It is well known, and we show it explic-
itly in Appendix E, that stationary diffusion remains symmet-
ric despite the asymmetry of the underlying potential land-
scape, thus making nonfunctional the perpetuum mobile
design of Fig. 2.

In this paper, we compute the mean first passage times
�MFPT� corresponding to cases 1A and 1B in Fig. 1 �or to
cases 2A and 2B�. We consider the Brownian motion of a
particle diffusing classically in an asymmetric sawtooth po-
tential U�x� and in the inverted or reversed version of the
potential �Fig. 3�. This model neglects the entropic barrier
�of order kBT ln N� presented by the DNA coils on both sides
of the pore �8,9�, but through the consideration of subdiffu-
sion it does take into account the extra friction created by
those coils �13�. From the results, we discuss when the dif-
ference between the two times is significant. �Note that since
we know very little about the details of the interactions be-
tween the DNA bases and the pore, we cannot determine if
case A in Fig. 3 corresponds to case 1A in Fig. 1, and case B
in Fig. 3 corresponds to case 1B in Fig. 1, or if it is the other
way around.�

Since DNA translocation is ultimately not classical diffu-
sion, but rather subdiffusion �7,12�, we consider also the first
passage times for the subdiffusion in the presence of an
asymmetric potential. In general, the first passage time for
subdiffusion was recently a matter of considerable interest
and a dispute in the literature �16–18�. It is now understood
�19–21� that the mean first passage time diverges for subdif-
fusion, because a subdiffusing walker tends to remain too
long on the place that it once reached. Accordingly, we look

at the probability distribution for the first passage times
�DFPT�, and concentrate on its tail at long times. We found
that this tail is very different for the two potentials, and the
difference turns out to be expressed through corresponding
mean first passage times for classical diffusion. With this
knowledge, we construct an average first passage time from a
subset of passage events and show that this average scales as
N2/�. The result also exhibits the asymmetry between cases
1A and 1B �or 2A and 2B� just as in the case of classical
diffusion.

From our discussion we make the prediction that the ob-
served passage times for the four possible mutual orienta-
tions of the pore and the DNA will all be different.

II. RESULTS

A. Classical diffusion

For treating classical or normal diffusion, one often starts
with the Fokker-Planck �FPE� equation �in this context also
frequently called Smoluchowsky equation�

�P�x,t�
�t

= D
�

�x
e−U�x� �

�x
eU�x�P�x,t� �1�

giving the time evolution of the probability density P�x , t�.
Here D is the usual diffusion constant and we have set kBT

FIG. 3. �Color online� The sawtooth potential of N teeth with a
reflecting boundary at x=0 and an absorbing boundary at x=L
=Na, illustrated for two different directions of asymmetry in the
sawtooth. The reflecting boundary corresponds to the inability of
the DNA hairpin to pass through the pore.
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=1. The FPE yields the Boltzmann distribution for P in the
steady state, as well as giving the linear relation between the
mean-squared displacement and time in the absence of exter-
nal forces.

In calculations involving the first passage time, it would
be convenient to consider the equivalent problem of first
passage to either x=L=Na or x=−L=−Na, where the poten-
tial U�x� for x�0 is as illustrated in Fig. 3, while the poten-
tial for x�0 is U�x� for positive x reflected about the vertical
axis. With this picture, the probability for the particle to still
be “alive” at time t, also called the survival probability S�t�
�and measured in experiment �14��, is given by S�t�
=�−L

L P�x , t�dx. The distribution of first passage times F�t� is
calculated from S�t� via F�t�=−�S�t� /�t. This gives the fol-
lowing expression for the mean first passage time ��x0� �25�:

��x0� = 	
0

�

tF�t�dt ,

=	
0

�

S�t�dt ,

=	
0

� 	
−L

L

P�x,t�dx dt �2�

where x0 is the initial position of the particle P�x ,0�=	�x
−x0�.

It can be shown that ��x0� satisfies an ordinary differential
equation �23,24,26� �derived in Appendix B�. The solution of
this differential equation for a sawtooth potential U�x� is
outlined in Appendix C. For the particle initially located at
the origin �x0=0�, the mean first passage time to reach x
=L=Na is given by

�A = �
L2

2D
− 


aL

D
�3�

for the potential in Fig. 3�A�, and

�B = �
L2

2D
+ 


aL

D
�4�

for the potential in Fig. 3�B�. Here, we have defined the
coefficients

� = 
 sinh�U0/2�
U0/2

�2

, �5�


 =
sinh�U0� − U0

U0
2 . �6�

Expression �4� can be obtained from �3� by flipping the sign
of U0.

From the results �3� and �4�, it is clear that �A��B. Physi-
cally, the inequality �A��B may be obvious for the case N
=1 in Fig. 3, in which a particle has to surmount a single
barrier in order to get to x=L in case B, while there is no
barrier in case A. In general, for a given N, the potential in
Fig. 3�A� involves N−1 barriers, while the potential in Fig.

3�B� involves N barriers. In fact, it is easy to show that in the
limit U0�1 �U0 /kBT�1 in more conventional units� we
have �A�N+1���B�N�, where the arguments indicate the
number of teeth in the sawtooth potentials.

For the long DNA, when L�a or N�1, the leading terms
in both �A �3� and �B �4� are proportional to N2, as one would
expect for diffusion times. To this leading order, first passage
times �A and �B obey the symmetry in diffusion and are the
same. It is in the subleading terms �proportional to L� that the
two times differ. Let us stress that the difference between �A
and �B, which is of the order of 1 /N in a relative sense, is
entirely due to the boundary conditions and the situation at
the ends of the diffusion region.

B. Anomalous diffusion

Anomalous diffusion is characterized by the occurrence of
a mean-square displacement of the form ���x�2�� t�, where
0���1 in subdiffusion; traditionally �22�, this is written in
the form

���x�2� =
2D�

��1 + ��
t�, �7�

where D� is a generalized diffusion constant and ��x� is the
gamma function. For �=1 one recovers the usual result for
classical diffusion. It can be shown �22� that this form for the
mean-square displacement can be obtained from a general-
ized version of Eq. �1� called the fractional Fokker-Planck
equation �FFPE�. This equation is described in Appendix A.

Although up to this point we have ignored the interactions
of the DNA bases outside the pore, it seems reasonable to
speculate that their effect is to slow down the translocation.
Thus one might be able to take these interactions into ac-
count phenomenologically by positing a value of � corre-
sponding to the subdiffusive domain 0���1. �Ref. �19�
lists possible sources of waiting time distributions leading to
anomalous diffusion.�

It is shown below and in Refs. �17–20� that the MFPT
does not exist for subdiffusion. This leads us to consider the
probability distributions themselves. The method of Laplace
transforms can be used to solve for the transform of the
survival probability �16,18�, but one is left with the very
difficult task of obtaining the inverse transform, even for the
case of a sawtooth with N=1. However, it is shown in Ap-
pendix D that the long-time limit of the survival probability
and the first passage time distribution scales as some power
of t and that they are simply related to the expression for the
MFPT in the context of classical diffusion as follows:

S�t� � ��

t−�

��1 − ��
�8�

F�t� = −
�S�t�

�t
� ��

�t−�−1

��1 − ��
. �9�

Here �� is the same expression as the MFPT in classical
diffusion �3� �or �4��, but containing a generalized diffusion
constant. The long-time limit is reached when t����

�L2 /D��N2. The relationships �8� and �9� ultimately arise
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from the almost identical expressions for the solution P�x , t�
in classical diffusion and in subdiffusion. The two solutions
differ only in the time dependence, which is an exponential
for classical diffusion.

Because the expectation time of a first passage is infinite,
any meaningful experiment, real or computational alike,
must be based on some protocol rendering the observation
time finite. We argue that in essence such a protocol is al-
ways reduced to discarding the events which fail to come to
completion within some specified time t*; in other words,
only those passage events that each complete within some
time t* are counted. The rest of the events that do not end by
time t* are terminated and discarded. The conditional prob-
ability distribution of the first passage events that get counted
under such a protocol is then given by

F�t�

1 − 	
t*

�

F�t�dt

. �10�

For such an experiment, there exists a perfectly defined and
finite average first passage time. This conditional average,
for large t*, is

	
0

t*

tF�t�dt

1 − 	
t*

�

F�t�dt

�
��

�t*1−�

�1 − � � � �1 − � �

1−
��

t*� � �1 − � �

�11�

So far, the time t* should be long enough, but otherwise
arbitrary. Now we argue that the time t* must be chosen such
that roughly about half of the passage events at a given N get
discarded. This requirement seems reasonable, for if one dis-
cards a much smaller fraction t* becomes too large and the
measurements get inefficiently slow; if one discards a much
larger fraction t* becomes too small and the tail of the dis-
tribution does not get sampled properly. Thus, assuming
about half of the events get discarded, t* becomes of order
����1/�, just at the boundary of the validity of the asymptot-
ics. Substituting this into �11�, one obtains a scaling of
����1/��N2/� for the average first passage time. Of course,
this scaling is not unexpected for subdiffusion with an aver-
age displacement going like t�/2. Furthermore, due to the
appearance of the classical diffusion times �A and �B �which
take the place of �� depending on the potential� in the aver-
age first passage time we just defined, the asymmetry of the
first passage time is once again present in this case.

III. DISCUSSION

The ratio of the MFPTs in classical diffusion, expressions
�3� and �4�, is plotted in Fig. 4 for a few realistic values of N
and U0. We see that for U0 equal to a few kBT, the difference
becomes small ��10% � for N�10. For N=50, correspond-
ing to the length of ssDNA used in the experiments by
Meller and coworkers �14�, and for U0 /kBT�10, the frac-
tional difference in MFPTs is about 4%.

We emphasize again that one cannot use the results of the
comparison between these two times �cases 1A and 1B in

Fig. 1� and apply it to the experimental results in �14� �cases
1A and 2A in Fig. 1�. Due to the asymmetry of the pore, the
3� and the 5� threading of DNA through one end of the pore
�the so-called cis side� cannot be readily reduced to cases 1A
and 1B in Fig. 3.

Having established the differences in average first passage
times for the two asymmetric potentials, let us now turn to
the scaling of the first passage times with N. For large N, the
scaling result N2 found earlier is well known for classical
diffusion or Brownian dynamics. However, this is in conflict
with the equilibration time of a polymer with N monomers in
the absence of a pore and membrane, which already scales
with N to some power larger than 2 for Rouse dynamics of
self-avoiding chains �13�. This suggests that a correct de-
scription of polymer translocation should be made in the
context of subdiffusion, where the scaling of the average first
passage time is to power 1/��1 of the classical result, al-
though we do not give a prediction for the value of � itself
because the interactions involving the DNA or polymer lo-
cated outside the pore were not treated explicitly. The scaling
N2/� is also not surprising if one takes the relation ���x�2�
� t� and puts �x�N, but it does not rule out the argument
made above regarding t*, only that it gives a reasonable and
somewhat expected answer. Moreover, using similar argu-
ments, the result N2/� is consistent with numerical simula-
tions made by Chuang, Kantor, and Kardar �13� for diffusive
dynamics of self-avoiding chains in two dimensions. They
found that the average of the first passage time scales as �
�N2.5=N1+2
, where 
= 3

4 in two dimensions. They also ar-
gued, assuming that the translocation coordinate goes like
��x2�t��� t� at short times, that �=2/ �1+2
�. Eliminating 
,
their formulas imply that ��N2/�.

To summarize, based on our calculations for the mean
first passage times in asymmetric sawtooth potentials and
experiments by Meller and coworkers �14�, we expect that
the average first passage times for the four cases indicated in
Fig. 1 are all different. The expression for the tail of the first
passage time distribution in subdiffusion is of the form
��� /��1−��t1+�, where �� is the formula for the mean first
passage time in classical diffusion. Because the power of t in

FIG. 4. �Color online� The ratio �A /�B plotted against the di-
mensionless drift or barrier height va /D=U0 /kBT for N=1 �bot-
tommost curve�, N=2, N=5, and N=10.
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the distribution is less than 2, the mean first passage time
diverges. By constructing an average from the first passage
times less than time t* such that approximately half of the
passages get rejected, we find an average that scales as
����1/��N2/�.
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APPENDIX A: FRACTIONAL FOKKER-PLANCK
EQUATION

A generalization of the FPE describing anomalous diffu-
sion is given by the fractional FPE �22�

�P�x,t�
�t

=0Dt
1−�LFPP . �A1�

Equivalently,

=0Dt
�P�x,t� −

t−�P�x,0�
��1 − ��

= LFPP , �A2�

where the Fokker-Planck operator is defined as

LFP = D�

�

�x
e−U�x� �

�x
eU�x�. �A3�

Here D� is a generalized diffusion coefficient and U�x� is an
external potential. We have also set kBT=1 and the Einstein
relation is implicit. The Riemann-Liouville fractional opera-
tor is defined through

=0Dt
1−�W =

1

����
�

�t
	

0

t

dt�
W�x,t��

�t − t��1−� . �A4�

One can easily check that the FFPE reduces to the FPE or
diffusion equation for �=1.

Given the initial distribution P�x ,0�=	�x−x0�, the solu-
tion to Eq. �A1� is given by the bilinear expansion �22�

P�x,t;x0,0� = eU�x0�/2−U�x�/2

n=0

�

�n�x��n�x0�E��− �nt�� .

�A5�

The functions �n�x�=e−U�x�/2�n�x� and Tn�t�=E��−�nt�� ap-
pear in the separation of variables ansatz Wn�x , t�
=�n�x�Tn�t�. The product function Wn�x , t� satisfies the
FFPE. Note that the coordinate dependence comes through
the eigenfunctions �n�x� or �n�x�, which are the same as for
regular diffusion, satisfying the �eigenvalue� equations

LFP�n�x� = − �n�n�x� , �A6�

LFP
Hermitian�n�x� = − �n�n�x� , �A7�

LFP
Hermitian = eU�x�/2LFPe−U�x�/2. �A8�

However, as to the time dependence, which for classical dif-
fusion is described by exponentials �e−�nt�, for subdiffusion it
must satisfy the equation

dTn�t�
dt

= − �nDt
�Tn�t� . �A9�

One can check that the following series definition of the
Mittag-Leffler function E��z� satisfies Eq. �A9�

E��z� = 

m=0

�
zm

��1 + �m�
. �A10�

This function is a natural extension of the exponential func-
tion, to which it degenerates for �=1.

By taking the Laplace transform of both sides of Eq. �A9�,
one obtains an alternative definition of the Mittag-Leffler
function

L�E��− �t��� = �s + �s1−��−1. �A11�

�The subscript in the constant � has been dropped.� The
long-time limit of the Mittag-Leffler function corresponds to
the small s limit of the Laplace transform. Expanding �A11�
in a series for small s,

L�E��− �t��� �
1

�s1−��1 −
s�

�
+ 
 s�

�
�2

− ¯ �
� 


m=1

�

�− 1�m+1s�m−1

�m . �A12�

Taking the inverse transform, one obtains the long-time be-
havior of the Mittag-Leffler function

E��− �t�� � 

m=1

�
�− 1�m+1

��1 − �m�
��t��−m. �A13�

For �=1−�=0, the Laplace transform �A11� becomes �s
+��−1, the inverse transform of which is an exponential. For
� close to 0, we expect a long time interval in which the
Mittag-Leffler function E��−�t�� behaves like an exponen-
tial; at much longer times the behavior changes to a power
law. The crossover is expected to happen when e−�tc

�1/�����tc
�, or at about tc�1/� ln�1/��.

APPENDIX B: DIFFERENTIAL EQUATION SATISFIED
BY THE MEAN FIRST PASSAGE TIME

Recall that the MFPT can be calculated from Eq. �2�

��x0� = 	
0

� 	
−L

L

P�x,t�dx dt . �B1�

To derive an ordinary differential equation satisfied by
��x0�, apply the operator eU�x0�LFP,x0

e−U�x0� to Eq. �B1� and
use the eigenfunction expansion solution �A5� for P�x , t�,
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eU�x0�LFP,x0
e−U�x0���x0�

= 	
0

� 	
−L

L

eU�x0�/2−U�x�/2

�

n=0

�

�− �n��n�x��n�x0�E��− �nt��dx dt

= 	
0

� 	
−L

L

LFPP�x,t�dx dt

= 	
0

� 	
−L

L �0Dt
�P�x,t� −

t−�P�x,0�
��1 − �� �dx dt .

In the last two steps, the eigenvalue equations and the second
version of the FFPE �Eq. �A2�� was used.

Using the initial condition P�x ,0�=	�x−x0� and the defi-
nition of the fractional operator, after some algebra one ob-
tains

eU�x0�LFP,x0
e−U�x0���x0�

= − lim
t→�

� t1−�

��2 − ��
−

1

��1 − ��	0

t S�t��
�t − t���dt�� �B2�

or

D�eU�x0� �

�x0
e−U�x0� �

�x0
��x0�

= − lim
t→�

� t1−�

��2 − ��
−

1

��1 − ��	0

t S�t��
�t − t���dt�� . �B3�

For �=1, corresponding to classical diffusion, the survival
probability S�t�� decays exponentially and the term with the
integral goes to zero, yielding the familiar result of −1 for the
right-hand side �23,24,26�. For ��1, S�t�� goes like �t��−�

�see �D2�� and the term with the integral goes like t1−2�. The
right-hand side diverges, which hints at the nonexistence of
the MFPT for subdiffusion �17–21�.

APPENDIX C: SOLUTION FOR THE MEAN FIRST
PASSAGE TIME IN A SAWTOOTH POTENTIAL

From the previous section, the differential equation satis-
fied by the MFPT in the context of classical diffusion is
�temporarily putting back kBT�

DeU�x�/kBT d

dx
e−U�x�/kBTd��x�

dx
= − 1. �C1�

We solve for ��x� in this equation for a sawtooth potential
�case A, Fig. 3� subject to the boundary conditions
d� /dx�0�=0 and ��L�=0, and the continuity of � and
e−U/kBTd� /dx in �0,L�. In what follows we let �=eva/D

=eU0/kBT.
The solution, for x between �m−1�a and ma where m is

an integer between 1 and N �inclusive�, is given by

��x� = Ame−vx/D −
x

v
+ Bm. �C2�

The coefficients A and B are given by

Am = �m−1 D

v2 ��� − 1��m − 1� − 1�;

Bm =
D

v2 + N
a

v
− �1 − 1/��

D

v2�
+

D

v2

�� − 1�2

�

�N − m��N + m − 1�
2

. �C3�

The MFPT for a particle initially located at x=0 is given by
��0�=A1+B1. To obtain the solution for case B in Fig. 3, we
may flip � �→1/�� and the sign of v in the expressions
above.

APPENDIX D: RELATIONSHIP BETWEEN THE DFPT
IN ANOMALOUS DIFFUSION AND THE MFPT

IN CLASSICAL DIFFUSION

Since the MFPT does not exist for subdiffusion, one
would want to calculate the distributions instead. In the long-
time limit, using �A5� and �A13�,

lim
t→�

P��x,t;x0,0� � 

n

eU�x0�/2−U�x�/2�n�x��n�x0�
1

��1 − ���nt� ,

�D1�

lim
t→�

S��t�

� 

n

	

−L

L

e−U�x�/2�n�x�dx�eU�x0�/2�n�x0�
1

��1 − ���nt� ,

�D2�

lim
t→�

F��t�

� 

n

	

−L

L

e−U�x�/2�n�x�dx�eU�x0�/2�n�x0�
�

��1 − ���nt�+1 .

�D3�

Again, these results indicate that the MFPT diverges for �
�1. It is also interesting to note that all the eigenfunctions
�n�x�, not just the ground state, enter in the expressions.

To make sense of the expression multiplying � /��1
−��t�+1 in �D3� write down the corresponding solution for
classical diffusion under the same potential and the same
value for the diffusion coefficient

P�x,t;x0,0� = eU�x0�/2−U�x�/2

n=0

�

�n�x��n�x0�exp�− �nt� .

�D4�

�Note exponential instead of Mittag-Leffler function�. The
survival probability is given by
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S�t� = 

n

	

−L

L

e−U�x�/2�n�x�dx�eU�x0�/2�n�x0�exp�− �nt� .

�D5�

While the MFPT is given by

��x0� = 	
0

�

S�t�dt

= 

n

	

−L

L

e−U�x�/2�n�x�dx�eU�x0�/2�n�x0�
1

�n
�D6�

which is identical to the coefficient of � /��1−��t�+1 in �D3�.

APPENDIX E: EFFECTIVE DIFFUSION CONSTANT IN
THE STEADY STATE

In this section we determine the steady state current J
given fixed concentrations c�0� and c�L� at the boundaries.

Let the potential U�x� satisfy U�0�=U�L�=0, but is other-
wise arbitrary. The classical diffusion equation is given by

�c

�t
= −

�J

�x
�E1�

where J=−De−U�x�� /�x�eU�x�c� �see Eq. �1��. In the steady
state, �c /�t=0, which implies that J is spatially uniform.
Integrating JeU�x�=−D� /�x�eU�x�c�x�� and utilizing the
boundary conditions, one obtains

J =
D

	
0

L

eU�x�dx

�c�0� − c�L�� . �E2�

This expression is identical with Fick’s law with an effective
diffusion constant of DL /�0

LeU�x�dx.
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